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Abstract

In Information Extraction, a very common task
is to extract facts about a single event or en-
tity from an entire document such as a personal
homepage, a job or a seminar announcement.
The double classification method approaches this
task with two automatic classifiers. The first one
classifies larger document fragments to roughly
indicate which of them are likely to contain tem-
plate fillers. The second classifies text tokens in-
side promising fragments to more precisely pin-
point the filler. In this study we show how the
effectiveness of the method can be considerably
increased by optimizing the task difficulty of each
of the classifiers. We then consider the related
problem of identifying the best filler per tem-
plate field among all the text tokens labeled as
positive instances of that field by the second clas-
sifier. We present a method to delimit a token or
sequence of tokens among them as the best filler
for the field.

1 Introduction

A common information extraction (IE) task is to ex-
tract facts about a single event or entity from an en-
tire document such as a person’s name and contact
details from her home page. Correspondingly, for each
IE task, there is one template to be filled for each doc-
ument. Previous research has developed a range of 1IE
methods based on automatic classification techniques
to address this kind of task (e.g., (Freitag 98), (Soder-
land 99), (McCallum et al. 00), (Califf & Mooney 98),
(Chieu & Ng 02)).

The double classification method uses two differ-
ent automatic classifiers to extract information. The
method is inspired by the observation that when hu-
mans need to extract some facts from a document they
scan it quickly and only read closely those parts that
look most relevant. In a similar manner, the double
classification method uses the first classifier to identify
document fragments that are likely to contain tem-
plate fillers. The second classifier classifies tokens in-
side the promising fragments to more precisely pin-
point the filler. The study by (Sitter & Daelemans
03) has shown that this is a very promising approach
to pursue. By first performing classification of frag-
ments, the unbalanced data problem at the token level
is greatly reduced, i.e. the fact that a document con-
tains much fewer positive examples of field fillers than

negative ones. De Sitter and Daelemans’ study demon-
strated that the method is both more efficient and ef-
fective than methods that extract template fillers by
examining the immediate context of each token in the
text.

This paper examines the idea that the effectiveness
of the method can be increased by carefully choos-
ing the classification problems for the two classifiers.
We show that by using an appropriate fragment size
and applying thresholding and instance selection tech-
niques, the token-level classifier is able to locate tem-
plate fillers more accurately than the original method
proposed by (Sitter & Daelemans 03).

Another contribution of the paper is the proposal of
a new method for accurate identification of one single
filler for a field which may consist of a single token or a
sequence of tokens. The method identifies such fillers
in the output of the double classification method. It
takes advantage of such evidence for the best filler as
the relative position of tokens labeled as positive by
the second classifier, the frequency of the token se-
quences, and the frequency of their subparts.

The paper is organized as follows. The next section
discusses the double classification method in more de-
tail, presents the techniques that we investigate in or-
der to adjust the two classification problems and pro-
poses an algorithm for the identification of the best
fillers in the output of the method. Section 3 describes
the settings used for experimental evaluation. In Sec-
tion 4, we present and discuss the results of the evalu-
ation. Finally, in Section 5, we summarize the results
and draw conclusions.

2 The Double Classification Method

2.1 Task Definition

The IE procedure performed by the double classifi-
cation method can be formally described as follows.
Suppose we have a corpus annotated in terms of a
predefined IE template, i.e., certain text tokens (words
and punctuation) have a tag signifying that they in-
stantiate a field of the template. The corpus is ran-
domly divided into a training set of documents Drg
and a test set of documents Dpg. The first step is
to split documents in Dy and Drg into sets of doc-
ument fragments (say, sentences or paragraphs) Frp
and Frpg, respectively.

At each classification stage, n binary classifiers are



built, one for each template field s;. At the frag-
ment classification stage, classifier C'; is learned from
Frr. Positive instances are fragments, which contain
at least one token annotated as s;. Features for rep-
resenting an instance are all tokens found inside the
fragment. C is evaluated on Fpg. Its output is Fi;,
the set of fragments that it has labeled as positive.

At the second stage, classifier C5 is learned only
from those fragments in Frr which contain tokens an-
notated as a filler for s;. Positive instances here are
tokens annotated as s;, negative ones are those that do
not have any tags or have tags other than s;. Features
are tags and tokens appearing within a certain window
around the token. C5 is evaluated on tokens contained
in F,u. The output from Cs is a list of tokens W,
which it has labeled as positive instances of s;.

In computing evaluation metrics for the method as
a whole, true positives are those tokens in W,,; that
have been manually annotated as positive, false posi-
tives are tokens in W,,; that have not been manually
annotated as positive, and false negatives are tokens
have been manually annotated as positive, but did not
make it into either F,,; or W,;.

2.2 Adjusting the Task Difficulty

We hypothesize that the effectiveness of the method
greatly depends on how the difficulty of the entire IE
task (i.e. the search space in which template fillers
should be found) is distributed between the two clas-
sifiers. We would like to find a balance that will avoid
two kinds of situations leading to poor overall results:

1. C; achieves high precision, but low recall. The
search space for Cs is greatly shrunk, but many rele-
vant tokens are missing from it.

2. (' achieves high recall, but low precision. Most
of the relevant tokens do appear at the second stage,
but there are also very many irrelevant ones and the
search space for Cs is too large.

In this paper, we examine whether or not the fac-
tors described in Sections 2.2.1 to 5 can help in the
discovery of this optimal balance:

2.2.1 Thresholding

The most suitable balance is not simply the most
balanced precision/recall ratio at C;. It may depend
on the nature of the documents at hand, namely on
how indicative of template fillers: (1) larger contexts
of tokens (e.g., paragraphs) and (2) their local contexts
(e.g., neighboring tokens) are relative to each other. If,
for example, it is easy to recognize fillers in their local
contexts, but larger contexts are difficult to distinguish
as relevant or irrelevant, one should be cautious about
classifications at (7 and aim to maximize C;’s recall
in order to increase the number of promising tokens
passed on to Cs. If, on the contrary, larger contexts
are highly indicative of template fillers, then it makes
sense to try to narrow down the search space for Cs
by preferring greater precision on the part of C;.

Thresholding is a technique that allows one to boost
either precision or recall by looking at the confidence
score of the classifier, such as the class membership
probability output by Naive Bayes classifiers or the
distance in the vector space output by k nearest neigh-
bors and Support Vector Machine classifiers. Various
thresholding techniques exist (see (Sebastiani 02)). In
this study we prioritize recall by determining the av-
erage confidence score for false negatives on held-out
data and during proper testing we retrieve all instances
above that threshold. To increase precision, we find
the average confidence score for false positives and dur-
ing testing treat all instances below that threshold as
negative even if the classifier assigns them the positive
label.

2.2.2 Fragment Size

The size of the fragments may have a strong effect on
how many relevant and irrelevant tokens will be passed
from C7 to Cs. If a document is split into many smaller
fragments, such as lines, classifying them will be more
difficult but this will allow for the greatest reduction of
the search space for Cs. If instead one chooses larger
fragments like paragraphs, relevant ones will be found
with greater ease, but Cy will suffer more from the
unbalanced data problem.

Again, the best solution is not necessarily to simply
choose average sized fragments; the usefulness of the
fragments depends on the specific characteristics of the
documents.

Note that thresholding and fragment size are orthog-
onal factors, so that their combination may maximize
the desired effect and at the same time compensate
for one another’s drawbacks. For example, aiming for
good recall of smaller fragments may lead to better
results overall than increasing precision in the classifi-
cation of larger fragments, and vice versa.

2.2.3 Selection of Instances

As in the work described in (Sitter & Daclemans
03), we also consider whether or not the problem of
too many negative instances can be alleviated by per-
forming instance selection. In order to build a more
effective classification model, we train it on data from
which some negative instances have been removed so
that a certain desired proportion between negative
and positive instances is achieved. After the model
is learned from the balanced training data, it is evalu-
ated on the unbalanced test data.

In this study we look at how instance selection in-
teracts with the other two parameters. In particular,
we wish to find out whether the problem of increased
search space resulting from maximized recall or from
using larger fragments can be remedied by performing
instance selection.

2.3 Identifying the Best Filler

The double classification method tries to find all oc-
currences of a filler in the document. Obviously, this



task is difficult and seldom error-free. In many situa-
tions, however, extracting all field instantiations is not
necessary, since the template field has to be filled with
one single filler. One possibility to perform this is to
choose out of all candidates the one that the token-
level classifier extracted with the greatest confidence.
However, this approach will not be very helpful in the
case when fillers consist of multiple tokens, as it may
easily select one part of the filler, but miss out others.

We propose a new method to identify the best filler
for a template field. In addition to the classifier confi-
dence score, it incorporates information about whether
the positively labeled tokens make up sequences, the
count of these sequences, and the use of general surface
constraints on the appearance of the filler.

The algorithm (see Algorithm 1) consists of two ma-
jor steps. The first step (lines 1-7) is to extract N, a
set of all possible token ngrams from C5’s output and
compute the initial score for each n. The ngrams are
uninterrupted sequences of tokens labeled as positive
instances of a template field. Those ngrams are elim-
inated that consist of tokens bearing no content such
as stopwords and punctuation (line 4). Semantically
empty tokens are also removed from the beginnings
and ends of the ngrams (line 5). The initial score for
n is computed as the sum of the weights of its occur-
rences, where the weight of each occurrence n,. is the
average classifier score C' of its constituents (line 6).

To illustrate with an example, consider the hypo-
thetical output from the classifier in Figure 1 (the first
column shows the number of the token in the docu-
ment, the second the token itself, the third the label
assigned by the classifier, and the last the classifier
confidence score). The algorithm will first extract the
ngrams "by John Doe.”; ”John”, and "Doe”. Strip-
ping stopwords and punctuation at the beginning and
end of each of them, three ngrams will be obtained:
”John Doe”, ”John”, and ”Doe”. Their initial scores
will be computed as follows:

score(” John Doe”) = (0.7540.5)/2 = 0.625

score(” John”) = 0.35

score(”Doe”) = 0.7

18 authored

NiL 0.5
19 by AUTHOR 0.5
20 John AUTHOR 0.75
21 Doe AUTHOR 0.5
22 . NIL 0.5
44 writes NiIL 0.6
45 John AUTHOR 0.35
46 . NIL 0.45
72 John NiL 0.3
73 Doe AuTHOR 0.7
74 , NIL 0.9

Figure 1. Example of the output from Cs.

Data: a list of positively classified document
tokens T', each attached with a classifier
confidence score C

Result: a list of token ngrams ranked according

to their relevance as template fillers
1 Extract a set of token sequences S from T
2 Create a set of unique token ngrams N by
extracting all subsequences from each s € S,
3 for each n in N do

4 discard n, if it contains only punctuation or
stopwords;
5 remove punctuation and stopwords in the
beginning and end of n;
. score(n) = anen m ie%cc C(i);
7 end
8 for each n in N do
9 discover N’ in N such that n’ is a subsequence
of n;
10 for each n’ do
11 | score(n) += score(n’) x %;
12 end
13 end

14 Rank N according to score;
Algorithm 1: The algorithm for identifying the best
filler per template field.

The second step (lines 8-13) is to add further weight
to those ngrams whose subsequences exist in V. Thus,
the final score for ”John Doe” will be increased by the
initial scores of its subsequences ”John” and "Doe”
appearing as distinct ngrams, each weighted by the
proportion of its length to the length of the greater
ngram, i.e. by 0.35%0.5 + 0.7*0.5 = 0.525. In this
way, the algorithm aims to further take into account
those cases, when only a part of a relevant ngram has
been labeled positively by the classifier.

As it is reliant upon the count of the ngram, the
method may have important interaction with the par-
ticular thresholding and fragmentation methods used.
Specifically, we hypothesize that the best filler identi-
fication works best with double classification settings
that achieve the greatest recall while maintaining high
precision.

3 Evaluation

3.1 Experimental Task

The documents we would like to extract information
from are web pages describing NLP resources including
software (part-of-speech taggers, parsers, various cor-
pus tools) and data (evaluation corpora and datasets,
frequency lists, gazetteers). The IE template consists
of the following fields: NAME, CREATOR, AREA (appli-
cation area), TGTLANG (target language), PLATFORM,
PROGLANG (programming language), and EMAIL (con-
tact email). All the fields take single fillers, except
TGTLANG and PLATFORM. Some slots are mandatory



(e.g., NAME), while others are not (e.g., TGTLANG). It
should be emphasized that although some of the fields
are filled by a closed class of words (e.g., PLATFORM),
the IE method is a machine learning procedure that ex-
tracts fillers by examining only the context of tokens
in the documents.

3.2 Data

The evaluation is carried out on 100 web pages that
had been manually downloaded using the link collec-
tion on the topic at the Language Technology World
web site!. The documents are preprocessed in the fol-
lowing steps:

Irrelevant HTML code (e.g., tags for images, forms,
various scripts) are removed. The HTML structure
is standardized and converted to XML. The docu-
ments were tagged for paragraph and sentence bound-
aries, parts-of-speech and syntactic chunks using the
LT Chunker program (Mikheev 96).

3.3 Classification Method

At C each fragment was represented as a feature vec-
tor, where features corresponded to the tokens found
in it. All words were stemmed, stopwords and words
appearing in less than 5 different fragments in the en-
tire corpus were discarded. At Cs, to represent each
token t, the following features were used:

e token_itself: the string corresponding to ¢

e tags_itself: XML tags (layout, PoS, phrase
chunking tags) inside which ¢ appears

e token_before: the token directly before ¢

e tags before: XML tags on the token before ¢
e token_after: the token directly after ¢

e tags_after: XML tags on the token before ¢

e token_window: the tokens appearing within the
context window of 2 around ¢

e tags_window: all XML tags appended on the to-
kens within the context window.

In the experiments we used the WEKA implementa-
tion of the multinomial Naive Bayes learner (Witten
& Frank 99). To assess the accuracy of classifications,
we use 10-fold cross-validation, computing precision,
recall and F-measure for each field and then averaging
the results.

4 Results and Discussion

4.1 Fragmentation Method

We experimented with four types of fragments: Sec-
tions (Sec), Paragraphs (Par), Sentences (Sent) and
Lines (Lin). Table 1 characterizes each type of frag-
ments.

Thttp:/ /www.lt-world.org

Sec | Par | Sent Lin
Tokens per fragment | 68.5 | 18.8 | 9.4 7.3
Fragments per doc 15 54.2 | 101.6 | 142.1

Table 1: The average size of fragments and the number
of fragments per document for the four fragmentation
methods.

No thresholding | Boosted P | Boosted R
Sec 0.02 0.03 0.01
Par 0.05 0.06 0.04
Sent 0.81 0.08 0.77
Lines 0.09 0.1 0.08

Table 3: Search space at Cs: the proportion of positive
and negative training instances for different fragmen-
tation methods and thresholding settings.

Table 2 describes the effectiveness of classifications
at both levels (C; and C3) resulting from the use of
each fragmentation method (Sec, Par, Sent, Lin). The
best results across fragmentation methods are shown
in bold. Column 1 in Table 3 characterises the search
space for each fragmentation method as the corre-
sponding proportion of positive and negative instances
at the token level.

We see that at C7 larger fragments do indeed re-
sult in an easier classification task: the highest effec-
tiveness at the first stage is achieved for the Sec and
Par methods. Looking at Cs, we notice that the pro-
portion of positive instances increases as the fragment
size decreases. This accounts for the fact that notwith-
standing good performance at the first stage, the Sec
method is often the worst when these fragments are
taken as the source from which fillers are extracted.
Although Lin has the greatest positive/negative ratio,
it performs poorly compared with other methods, be-
cause of inaccurate classifications at the initial stage.
Par exhibited the best overall performance at the sec-
ond level, outdoing Sent by a large margin.

4.2 Thresholding

We looked at how maximizing recall or precision inter-
acts with different fragment sizes. We would like to see
if thresholding can help to compensate for the weak-
nesses in a particular fragmentation method. Thus,
we expect that overall performance of small fragments
which greatly reduce the search space for Cs can be
improved by increasing recall for C7. This will in-
crease the search space for Cy, but the increase might
be smaller than the one resulting from simply using
larger fragments. Table 4 describes the results of these
runs at Cs. In bold are the figures showing better per-
formance than the runs without thresholding.

As will be noted from Table 3, boosting recall at
C; does increase Cy’s search space somewhat, but for
the smaller fragments, Sent and Lin, the search space
is still smaller than for Sec and Par without thresh-
olding. As figures in Table 4 show, this leads to an



Fragments Tokens Fragments Tokens
P | R F P | R | F P | R | F P [ R | F
Sections Sentences
NAME | 0.937 | 0.789 | 0.857 | 0.299 | 0.452 | 0.360 || 0.666 | 0.867 | 0.753 | 0.277 | 0.811 | 0.413
AREA | 0.857 | 0.666 | 0.750 | 0.080 | 0.378 | 0.132 || 0.500 | 0.375 | 0.429 | 0.177 | 0.810 | 0.291
CREATOR | 0.500 1 0.667 | 0.032 | 0.568 | 0.061 || 0.242 | 0.444 | 0.313 | 0.073 | 0.964 | 0.136
PLATFORM | 0.466 1 0.636 | 0.291 | 0.388 | 0.333 || 0.818 | 0.692 | 0.750 | 0.288 1 0.447
PROGLANG | 0.666 1 0.800 0 0 0 0.666 | 0.666 | 0.666 | 0.115 1 0.206
TGTLANG | 0.400 1 0.571 | 0.233 | 0.304 | 0.264 || 0.103 | 0.800 | 0.183 | 0.041 | 0.761 | 0.078
EMAIL | 0.304 1 0.466 | 0.169 | 0.907 | 0.285 || 0.134 1 0.236 | 0.173 | 0.975 | 0.294
AVERAGE | 0.590 | 0.922 | 0.720 | 0.158 | 0.428 | 0.231 || 0.447 | 0.692 | 0.543 | 0.163 | 0.903 | 0.276
Paragraphs Lines

NAME | 0.924 | 0.910 | 0.917 | 0.525 | 0.792 | 0.631 || 0.875 | 0.913 | 0.894 | 0.277 | 0.480 | 0.351
AREA | 0.363 | 0.500 | 0.421 | 0.301 | 0.814 | 0.439 || 0.600 | 0.375 | 0.462 | 0.245 | 0.285 | 0.263
CREATOR | 0.476 | 0.625 | 0.540 | 0.319 1 0.484 || 0.636 1 0.778 | 0.029 | 0.509 | 0.055
PLATFORM 1 0.692 | 0.818 | 0.375 1 0.545 || 0.437 1 0.608 | 0.225 | 0.388 | 0.285

PROGLANG 1 1 1 0.636 | 0.700 | 0.666 || 0.400 1 0.571 0 0 0
TGTLANG | 0.303 1 0.465 | 0.201 | 0.652 | 0.307 || 0.272 | 0.857 | 0.413 | 0.243 | 0.454 | 0.317
EMAIL | 0.214 1 0.353 | 0.524 | 0.981 | 0.683 || 0.296 1 0.457 | 0.142 | 0.962 | 0.247
AVERAGE | 0.611 | 0.818 | 0.848 | 0.700 | 0.412 | 0.555 || 0.502 | 0.878 | 0.639 | 0.166 | 0.440 | 0.241

Table 2: The accuracy of the fragment- and token-level classifiers resulting from each fragmentation method.

improvement in performance: both precision and re-
call rates frequently rose for Sent. In a similar fash-
ion, larger fragments profit from increased precision.
Boosting precision at C; narrows down the search
space for Cs, which often improves the accuracy for
larger fragments such as Sections.

4.3 Instance Selection

We examined instance selection techniques as an al-
ternative way to relax the unbalanced data problem
at C3. We look at whether they are especially helpful
for C5 in situations when high recall at C; is achieved.
The instance selection was carried out by randomly
discarding negative instances from the training data
until their count was the same as that of positive ones.
Table 5 describes the results for different thresholding
and fragmentation settings with instance selection ap-
plied. In bold are the results that are higher than
those achieved using the same configuration but with-
out instance selection.

We see that instance selection very often signifi-
cantly improves recall, notably for Sec and Lin; the
recall averages have gone up in all but one configura-
tions. However, this is sometimes achieved at the cost
of a considerable decrease in precision (e.g., for Lin
from 0.114 to 0.038). This may be due to the fact that
the model is induced from data that contains a greater
proportion of positive instances. This causes the clas-
sification of a larger proportion of test instances as
positive, hence higher recall, but lower precision. At
the same time, in some cases, instance selection also
resulted in an improved precision. In five out of the
twelve configurations, the precision averages have in-
creased. In general, it can be noted that instance se-
lection helps to achieve greater effectiveness: for many
configurations the averages of the F-measure have gone
up. Cases, when the averages of the F-measure have
deteriorated, are usually those when a large improve-

ment in recall was achieved at the expense of very low
precision. We believe that these unwanted situations
can be avoided by finding a better proportion of posi-
tive and negative instances in the training data during
instance selection.

4.4 Field-Specific Fine-Tuning

Using binary classifiers gives one the opportunity to
adjust the classification problems for each template
field separately. Table 6 compares the results achieved
for each field using the most optimal configuration for
that field (the last but one column) against the typi-
cal configuration of the double classification method,
i.e. using sentence fragments without performing any
thresholding or instance selection (the last column).
The results indicate that fine-tuning the classification
problem for each field separately offers a significant
improvement over the traditional approach in terms
of precision (by 0.2) and F-measure (by 0.26).

4.5 Identifying the Best Fillers

We evaluated the best filler identification algorithm
against the performance of hand-crafted IE rules. The
rules trigger the extraction of a particular field filler
based on a variety of orthographic, linguistic, and page
formatting cues. The hand-crafted rules were prepared
by two domain experts; the construction of the rules
took 4 person/weeks in total. As gold standard, we
used the same evaluation data as in the previous ex-
periments: a database was prepared by filling each
template field for each document with the most fre-
quent unique filler tagged by annotators in that docu-
ment. The evaluation of the both IE methods consisted
of 10-fold cross-validation, at each fold both methods
were evaluated on the same set of documents.

We examined the effect of varying the parameters
of the double classification method (the fragment size,
thresholding and instance selection) on the perfor-



Sec Par Sent Lines
P | R | F P | R | F P | R | F P | R | F
Boosted precision

NAME | 0.305 | 0.456 | 0.366 | 0.420 | 0.828 | 0.557 | 0.296 0.811 0.434 0.220 | 0.481 | 0.302
AREA | 0.085 | 0.400 | 0.140 | 0.218 | 0.814 | 0.344 | 0.177 | 0.810 0.291 | 0.274 | 0.285 | 0.279
CREATOR | 0.018 | 0.551 | 0.035 | 0.190 1 0.319 0.073 0.964 | 0.136 0.002 | 0.142 | 0.004
PLATFORM | 0.666 | 0.200 0.308 | 0.230 1 0.374 0.288 1 0.447 | 0.250 | 0.272 0.261

PROGLANG 0 0 0 0.583 | 0.700 0.636 0.115 1 0.206 0 0 0
TGTLANG | 0.241 | 0.318 | 0.274 | 0.141 0.652 0.232 0.041 0.761 0.078 0.243 0.454 0.317
EMAIL | 0.142 1 0.249 | 0.358 | 0.981 0.525 0.173 0.975 0.294 0.063 1 0.119
AVERAGE | 0.208 | 0.418 0.278 | 0.306 | 0.854 | 0.451 | 0.166 | 0.903 | 0.280 | 0.150 | 0.376 | 0.214

Boosted recall

NAME | 0.299 0.452 0.360 | 0.253 | 0.780 0.382 0.271 | 0.900 | 0.417 | 0.277 | 0.480 0.351
AREA | 0.080 0.378 0.132 | 0.032 | 0.803 0.062 0.288 0.810 | 0.425 | 0.041 | 0.213 | 0.069
CREATOR | 0.032 0.568 0.061 | 0.190 1 0.319 0.008 1 0.016 0.029 0.509 0.055
PLATFORM | 0.291 0.388 | 0.333 | 0.230 1 0.374 | 0.428 | 0.923 | 0.585 | 0.225 | 0.388 | 0.285

PROGLANG 0 0 0 0.583 | 0.700 0.636 0.750 1 0.857 0 0 0
TGTLANG | 0.233 0.304 | 0.264 | 0.096 | 0.652 0.167 | 0.003 1 0.006 | 0.087 | 0.391 | 0.142
EMAIL | 0.169 0.907 | 0.285 | 0.358 | 0.981 0.525 0.041 1 0.079 0.142 0.962 0.247
AVERAGE | 0.158 0.428 0.231 | 0.249 | 0.845 0.385 0.256 | 0.948 | 0.403 | 0.114 | 0.420 0.179

Table 4: The effect of boosting precision vs. recall at C; on the accuracy of Cy

mance of the best filler identification algorithm. Table
7 describes the results achieved with the most optimal
parameter settings for each field (the last but one col-
umn) and compares them with the performance of the
hand-crafted rules (the last column). We find that the
performance of the proposed algorithm is consistently
superior to that of the hand-crafted rules, and often
by a considerable margin (e.g., by 0.83 for TGTLANG).

5 Conclusion

The double classification method provides convenient
means to perform information extraction tasks where
there is one template to be filled from an entire docu-
ment. In this paper we presented an investigation into
a number of parameters of the method in order to opti-
mize its two classification subproblems and eventually
improve its overall performance.

In general, these experiments have shown that find-
ing appropriate settings for the three factors influenc-
ing the distribution of the task difficulty between the
two classifiers helps to improve the performance of the
method. In particular, doing so increased F-measure
by 0.26 in comparison with using fragmentation of doc-
uments into sentences without applying thresholding
and instance selection as was done in the original study
by (Sitter & Daeclemans 03).

The double classification method aims to extract all
tokens instantiating of template fields, which is a very
difficult and error-prone task. However, what is of-
ten needed instead is accurate extraction of one single
filler which may consist of a single token or a sequence
of tokens. We have presented a new method for the
identification of such fillers in the output of the dou-
ble classification method. The proposed method takes
advantage of the evidence for the best filler in form
of the relative position of tokens labeled as positive
by the second classifier, the frequency of the token

sequences, and the frequency of their subparts. Our
evaluation shows that the method coupled with the
double classification performs consistently better than
hand-crafted extraction rules.
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Sec Par Sent Lines
P | R | F P | R | F P R | F P | R | F
no thresholding
NAME | 0.150 | 0.857 | 0.255 | 0.407 | 0.867 | 0.554 | 0.271 | 0.900 | 0.417 | 0.195 | 0.880 | 0.319
AREA | 0.029 | 0.864 | 0.056 | 0.274 | 0.685 | 0.391 | 0.288 | 0.810 | 0.425 | 0.283 | 0.775 | 0.415
CREATOR | 0.008 1 0.016 | 0.208 | 0.947 | 0.341 | 0.097 | 0.964 | 0.176 | 0.009 1 0.018
PLATFORM | 0.005 1 0.010 | 0.647 | 0.916 | 0.758 | 0.428 | 0.923 | 0.585 | 0.006 1 0.012
PROGLANG | 0.714 | 0.500 | 0.588 1 0.600 | 0.750 | 0.750 1 0.857 | 0.040 1 0.077
TGTLANG | 0.003 1 0.006 | 0.009 1 0.018 | 0.016 1 0.031 | 0.004 1 0.008
EMAIL | 0.008 1 0.016 | 0.050 1 0.095 | 0.041 1 0.079 | 0.008 1 0.016
AVERAGE | 0.131 | 0.889 | 0.228 | 0.371 | 0.859 | 0.518 | 0.270 | 0.942 | 0.420 | 0.078 | 0.951 | 0.144
boosted precision
NAME | 0.162 | 0.876 | 0.273 | 0.465 | 0.881 | 0.609 | 0.309 | 0.891 | 0.459 | 0.159 | 0.796 | 0.265
AREA | 0.033 | 0.885 | 0.064 | 0.305 | 0.666 | 0.418 | 0.288 | 0.810 | 0.425 | 0.302 | 0.734 | 0.428
CREATOR | 0.006 1 0.012 | 0.208 | 0.947 | 0.341 | 0.097 | 0.964 | 0.176 | 0.004 1 0.008
PLATFORM | 0.800 | 0.400 | 0.533 | 0.647 | 0.916 | 0.758 | 0.428 | 0.923 | 0.585 | 0.636 | 0.636 | 0.636
PROGLANG 1 0.125 | 0.222 1 0.600 | 0.750 | 0.750 1 0.857 | 0.250 | 0.800 | 0.381
TGTLANG | 0.003 1 0.006 | 0.010 1 0.020 | 0.016 1 0.031 | 0.004 1 0.008
EMAIL | 0.008 1 0.016 | 0.050 1 0.095 | 0.041 1 0.079 | 0.004 1 0.008
AVERAGE | 0.287 | 0.755 | 0.416 | 0.384 | 0.859 | 0.531 | 0.276 | 0.941 | 0.427 | 0.194 | 0.852 | 0.316
boosted recall
NAME | 0.150 | 0.857 | 0.255 | 0.022 1 0.043 | 0.271 | 0.900 | 0.417 | 0.195 | 0.880 | 0.319
AREA | 0.029 | 0.864 | 0.056 | 0.012 1 0.024 | 0.288 | 0.810 | 0.425 | 0.008 1 0.016
CREATOR | 0.008 1 0.016 | 0.208 | 0.947 | 0.341 | 0.008 1 0.016 | 0.009 1 0.018
PLATFORM | 0.005 1 0.010 | 0.647 | 0.916 | 0.758 | 0.428 | 0.923 | 0.585 | 0.006 1 0.012
PROGLANG | 0.714 | 0.500 | 0.588 1 0.600 | 0.750 | 0.750 1 0.857 | 0.040 1 0.077
TGTLANG | 0.003 1 0.006 | 0.006 1 0.012 | 0.003 1 0.006 | 0.003 1 0.006
EMAIL | 0.008 1 0.016 | 0.050 1 0.095 | 0.041 1 0.079 | 0.008 1 0.016
AVERAGE | 0.131 | 0.889 | 0.228 | 0.278 | 0.923 | 0.427 | 0.256 | 0.948 | 0.403 | 0.038 | 0.983 | 0.073
Table 5: The effect of instance selection on different fragmentation and thresholding configurations.
Settings Best settings Typical
Thresholding Fragmentation | Inst. sel. P R F P R F

NAME boosted P paragraph yes 0.47 | 0.88 | 0.61 | 0.277 | 0.811 | 0.413

AREA boosted P paragraph yes 0.31 | 0.67 | 0.418 | 0.177 | 0.81 | 0.291

CREATOR boosted P paragraph yes 0.21 | 095 | 0.341 | 0.073 | 0.964 | 0.136

PLATFORM boosted P paragraph yes 0.65 | 0.92 | 0.758 | 0.288 1 0.447

PROGLANG | boosted P or none paragraph yes 1 0.6 0.75 | 0.115 1 0.206

TGTLANG boosted P line no 0.24 | 045 | 0.317 | 0.041 | 0.761 | 0.078

EMAIL boosted P paragraph no 0.36 | 0.98 | 0.524 | 0.173 | 0.975 | 0.294

AVERAGE - - - 0.46 | 0.78 | 0.53 | 0.163 | 0.903 | 0.276

Table 6: Comparison of accuracy using the best settings for each field against the typical parameter settings.

Settings One-best filler | Hand-crafted
Thresholding Fragmentation | Inst. sel. selection rules
NAME boosted P paragraph no 0.527 0.424
AREA boosted P sentence yes 0.705 0.211
CREATOR irrelevant sentence no 0.639 0.402
PLATFORM irrelevant sentence yes 1 0.472
PROGLANG | boosted P or none sentence yes 1 0.443
TGTLANG irrelevant paragraph no 0.849 0.016
EMAIL irrelevant paragraph no 0.276 0.108
AVERAGE - - - 0.714 0.129

Table 7: The F-measures of the best filler identification algorithm vs. hard-crafted rules.




